61 research outputs found

    Preclinical correction of human Fanconi anemia complementation group A bone marrow cells using a safety-modified lentiviral vector.

    Get PDF
    One of the major hurdles for the development of gene therapy for Fanconi anemia (FA) is the increased sensitivity of FA stem cells to free radical-induced DNA damage during ex vivo culture and manipulation. To minimize this damage, we have developed a brief transduction procedure for lentivirus vector-mediated transduction of hematopoietic progenitor cells from patients with Fanconi anemia complementation group A (FANCA). The lentiviral vector FancA-sW contains the phosphoglycerate kinase promoter, the FANCA cDNA, and a synthetic, safety-modified woodchuck post transcriptional regulatory element (sW). Bone marrow mononuclear cells or purified CD34(+) cells from patients with FANCA were transduced in an overnight culture on recombinant fibronectin peptide CH-296, in low (5%) oxygen, with the reducing agent, N-acetyl-L-cysteine (NAC), and a combination of growth factors, granulocyte colony-stimulating factor (G-CSF), Flt3 ligand, stem cell factor, and thrombopoietin. Transduced cells plated in methylcellulose in hypoxia with NAC showed increased colony formation compared with 21% oxygen without NAC (P<0.03), showed increased resistance to mitomycin C compared with green fluorescent protein (GFP) vector-transduced controls (P<0.007), and increased survival. Thus, combining short transduction and reducing oxidative stress may enhance the viability and engraftment of gene-corrected cells in patients with FANCA

    Protection of Stem Cell-Derived Lymphocytes in a Primate AIDS Gene Therapy Model after In Vivo Selection

    Get PDF
    Background: There is currently no effective AIDS vaccine, emphasizing the importance of developing alternative therapies. Recently, a patient was successfully transplanted with allogeneic, naturally resistant CCR5-negative (CCR5 delta 32) cells, setting the stage for transplantation of naturally resistant, or genetically modified stem cells as a viable therapy for AIDS. Hematopoietic stem cell (HSC) gene therapy using vectors that express various anti-HIV transgenes has also been attempted in clinical trials, but inefficient gene transfer in these studies has severely limited the potential of this approach. Here we evaluated HSC gene transfer of an anti-HIV vector in the pigtailed macaque (Macaca nemestrina) model, which closely models human transplantation. Methods and Findings: We used lentiviral vectors that inhibited both HIV-1 and simian immunodeficiency virus (SIV)/HIV-1 (SHIV) chimera virus infection, and also expressed a P140K mutant methylguanine methyltransferase (MGMT) transgene to select gene-modified cells by adding chemotherapy drugs. Following transplantation and MGMT-mediated selection we demonstrated transgene expression in over 7% of stem-cell derived lymphocytes. The high marking levels allowed us to demonstrate protection from SHIV in lymphocytes derived from gene-modified macaque long-term repopulating cells that expressed an HIV-1 fusion inhibitor. We observed a statistically significant 4-fold increase of gene-modified cells after challenge of lymphocytes from one macaque that received stem cells transduced with an anti-HIV vector (p<0.02, Student's t-test), but not in lymphocytes from a macaque that received a control vector. We also established a competitive repopulation assay in a second macaque for preclinical testing of promising anti-HIV vectors. The vectors we used were HIV-based and thus efficiently transduce human cells, and the transgenes we used target HIV-1 genes that are also in SHIV, so our findings can be rapidly translated to the clinic. Conclusions: Here we demonstrate the ability to select protected HSC-derived lymphocytes in vivo in a clinically relevant nonhuman primate model of HIV/SHIV infection. This approach can now be evaluated in human clinical trials in AIDS lymphoma patients. In this patient setting, chemotherapy would not only kill malignant cells, but would also increase the number of MGMTP140K-expressing HIV-resistant cells. This approach should allow for high levels of HIV-protected cells in AIDS patients to evaluate AIDS gene therapy

    Anticancer Gene Transfer for Cancer Gene Therapy

    Get PDF
    Gene therapy vectors are among the treatments currently used to treat malignant tumors. Gene therapy vectors use a specific therapeutic transgene that causes death in cancer cells. In early attempts at gene therapy, therapeutic transgenes were driven by non-specific vectors which induced toxicity to normal cells in addition to the cancer cells. Recently, novel cancer specific viral vectors have been developed that target cancer cells leaving normal cells unharmed. Here we review such cancer specific gene therapy systems currently used in the treatment of cancer and discuss the major challenges and future directions in this field

    Genetic Resistance to Rhabdovirus Infection in Teleost Fish Is Paralleled to the Derived Cell Resistance Status

    Get PDF
    Genetic factors of resistance and predisposition to viral diseases explain a significant part of the clinical variability observed within host populations. Predisposition to viral diseases has been associated to MHC haplotypes and T cell immunity, but a growing repertoire of innate/intrinsic factors are implicated in the genetic determinism of the host susceptibility to viruses. In a long-term study of the genetics of host resistance to fish rhabdoviruses, we produced a collection of double-haploid rainbow trout clones showing a wide range of susceptibility to Viral Hemorrhagic Septicemia Virus (VHSV) waterborne infection. The susceptibility of fibroblastic cell lines derived from these clonal fish was fully consistent with the susceptibility of the parental fish clones. The mechanisms determining the host resistance therefore did not associate with specific host immunity, but rather with innate or intrinsic factors. One cell line was resistant to rhabdovirus infection due to the combination of an early interferon IFN induction - that was not observed in the susceptible cells - and of yet unknown factors that hamper the first steps of the viral cycle. The implication of IFN was well consistent with the wide range of resistance of this genetic background to VSHV and IHNV, to the birnavirus IPNV and the orthomyxovirus ISAV. Another cell line was even more refractory to the VHSV infection through different antiviral mechanisms. This collection of clonal fish and isogenic cell lines provides an interesting model to analyze the relative contribution of antiviral pathways to the resistance to different viruses

    Early Reverse Transcription Is Essential for Productive Foamy Virus Infection

    Get PDF
    BACKGROUND: Although viral RNA constitutes the majority of nucleic acids packaged in virions, a late occurring step of reverse transcription leads to the presence of infectious viral cDNA in foamy virus particles. This peculiarity distinguishes them from the rest of the retroviral family. PRINCIPAL FINDINGS: To evaluate the respective contribution of these viral nucleic acids in the replication of foamy viruses, their fate was studied by real-time PCR and RT-PCR early after infection, in the presence or in the absence of AZT. We found that an early reverse transcription step, which occurs during the first hours post-entry, is absolutely required for productive infection. Remarkably, sensitivity to AZT can be counteracted by increasing the multiplicity of infection (moi). We also show that 2-LTR circular viral DNA, which appears as soon as four hours post-infection, is transcriptionally competent. CONCLUSION: Taken together, our data demonstrate that an early reverse transcription process, which takes place soon after viral entry, is indispensable for infectivity of FVs at low moi, when the amount of DNA-containing particles is not sufficient to lead to a productive infection. This study demonstrates a key role of the packaged viral RNA in the foamy virus infection, suggesting that the replication of this virus can be achieved by involving either viral DNA or RNA genome, depending on the condition of infection

    Computational Models of HIV-1 Resistance to Gene Therapy Elucidate Therapy Design Principles

    Get PDF
    Gene therapy is an emerging alternative to conventional anti-HIV-1 drugs, and can potentially control the virus while alleviating major limitations of current approaches. Yet, HIV-1's ability to rapidly acquire mutations and escape therapy presents a critical challenge to any novel treatment paradigm. Viral escape is thus a key consideration in the design of any gene-based technique. We develop a computational model of HIV's evolutionary dynamics in vivo in the presence of a genetic therapy to explore the impact of therapy parameters and strategies on the development of resistance. Our model is generic and captures the properties of a broad class of gene-based agents that inhibit early stages of the viral life cycle. We highlight the differences in viral resistance dynamics between gene and standard antiretroviral therapies, and identify key factors that impact long-term viral suppression. In particular, we underscore the importance of mutationally-induced viral fitness losses in cells that are not genetically modified, as these can severely constrain the replication of resistant virus. We also propose and investigate a novel treatment strategy that leverages upon gene therapy's unique capacity to deliver different genes to distinct cell populations, and we find that such a strategy can dramatically improve efficacy when used judiciously within a certain parametric regime. Finally, we revisit a previously-suggested idea of improving clinical outcomes by boosting the proliferation of the genetically-modified cells, but we find that such an approach has mixed effects on resistance dynamics. Our results provide insights into the short- and long-term effects of gene therapy and the role of its key properties in the evolution of resistance, which can serve as guidelines for the choice and optimization of effective therapeutic agents

    A Nuclear Localization of the Infectious Haematopoietic Necrosis Virus NV Protein Is Necessary for Optimal Viral Growth

    Get PDF
    The nonvirion (NV) protein of infectious hematopoietic necrosis virus (IHNV) has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP), a nuclear localization of NV was demonstrated. Deletion analyses showed that the 32EGDL35 residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-Ξ”EGDL in which the 32EGDL35 was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV) or with the NV gene replaced with GFP (rIHNV-Ξ”NV-GFP) were used as controls. RTG-2 cells infected with rIHNV-Ξ”NV-GFP and rIHNV-NV-Ξ”EGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.). While treatment with poly I∢C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-Ξ”NV-GFP and rIHNV-NV-Ξ”EGDL were inhibited by poly I∢C. In addition, both rIHNV-Ξ”NV and rIHNV-NV-Ξ”EGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of 32EGDL35 responsible for nuclear localization are important for the inhibitory activity of NV

    Fibroblasts Express Immune Relevant Genes and Are Important Sentinel Cells during Tissue Damage in Rainbow Trout (Oncorhynchus mykiss)

    Get PDF
    Fibroblasts have shown to be an immune competent cell type in mammals. However, little is known about the immunological functions of this cell-type in lower vertebrates. A rainbow trout hypodermal fibroblast cell-line (RTHDF) was shown to be responsive to PAMPs and DAMPs after stimulation with LPS from E. coli, supernatant and debris from sonicated RTHDF cells. LPS was overall the strongest inducer of IL-1Ξ², IL-8, IL-10, TLR-3 and TLR-9. IL-1Ξ² and IL-8 were already highly up regulated after 1 hour of LPS stimulation. Supernatant stimuli significantly increased the expression of IL-1Ξ², TLR-3 and TLR-9, whereas the debris stimuli only increased expression of IL-1Ξ². Consequently, an in vivo experiment was further set up. By mechanically damaging the muscle tissue of rainbow trout, it was shown that fibroblasts in the muscle tissue of rainbow trout contribute to electing a highly local inflammatory response following tissue injury. The damaged muscle tissue showed a strong increase in the expression of the immune genes IL-1Ξ², IL-8 and TGF-Ξ² already 4 hours post injury at the site of injury while the expression in non-damaged muscle tissue was not influenced. A weaker, but significant response was also seen for TLR-9 and TLR-22. Rainbow trout fibroblasts were found to be highly immune competent with a significant ability to express cytokines and immune receptors. Thus fish fibroblasts are believed to contribute significantly to local inflammatory reactions in concert with the traditional immune cells

    HIV interactions with monocytes and dendritic cells: viral latency and reservoirs

    Get PDF
    HIV is a devastating human pathogen that causes serious immunological diseases in humans around the world. The virus is able to remain latent in an infected host for many years, allowing for the long-term survival of the virus and inevitably prolonging the infection process. The location and mechanisms of HIV latency are under investigation and remain important topics in the study of viral pathogenesis. Given that HIV is a blood-borne pathogen, a number of cell types have been proposed to be the sites of latency, including resting memory CD4+ T cells, peripheral blood monocytes, dendritic cells and macrophages in the lymph nodes, and haematopoietic stem cells in the bone marrow. This review updates the latest advances in the study of HIV interactions with monocytes and dendritic cells, and highlights the potential role of these cells as viral reservoirs and the effects of the HIV-host-cell interactions on viral pathogenesis

    Molecular Ecology and Natural History of Simian Foamy Virus Infection in Wild-Living Chimpanzees

    Get PDF
    Identifying microbial pathogens with zoonotic potential in wild-living primates can be important to human health, as evidenced by human immunodeficiency viruses types 1 and 2 (HIV-1 and HIV-2) and Ebola virus. Simian foamy viruses (SFVs) are ancient retroviruses that infect Old and New World monkeys and apes. Although not known to cause disease, these viruses are of public health interest because they have the potential to infect humans and thus provide a more general indication of zoonotic exposure risks. Surprisingly, no information exists concerning the prevalence, geographic distribution, and genetic diversity of SFVs in wild-living monkeys and apes. Here, we report the first comprehensive survey of SFVcpz infection in free-ranging chimpanzees (Pan troglodytes) using newly developed, fecal-based assays. Chimpanzee fecal samples (nβ€Š=β€Š724) were collected at 25 field sites throughout equatorial Africa and tested for SFVcpz-specific antibodies (nβ€Š=β€Š706) or viral nucleic acids (nβ€Š=β€Š392). SFVcpz infection was documented at all field sites, with prevalence rates ranging from 44% to 100%. In two habituated communities, adult chimpanzees had significantly higher SFVcpz infection rates than infants and juveniles, indicating predominantly horizontal rather than vertical transmission routes. Some chimpanzees were co-infected with simian immunodeficiency virus (SIVcpz); however, there was no evidence that SFVcpz and SIVcpz were epidemiologically linked. SFVcpz nucleic acids were recovered from 177 fecal samples, all of which contained SFVcpz RNA and not DNA. Phylogenetic analysis of partial gag (616 bp), pol-RT (717 bp), and pol-IN (425 bp) sequences identified a diverse group of viruses, which could be subdivided into four distinct SFVcpz lineages according to their chimpanzee subspecies of origin. Within these lineages, there was evidence of frequent superinfection and viral recombination. One chimpanzee was infected by a foamy virus from a Cercopithecus monkey species, indicating cross-species transmission of SFVs in the wild. These data indicate that SFVcpz (i) is widely distributed among all chimpanzee subspecies; (ii) is shed in fecal samples as viral RNA; (iii) is transmitted predominantly by horizontal routes; (iv) is prone to superinfection and recombination; (v) has co-evolved with its natural host; and (vi) represents a sensitive marker of population structure that may be useful for chimpanzee taxonomy and conservation strategies
    • …
    corecore